જો $a \ne p,b \ne q,c \ne r$ અને $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ = $0,$ તો $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $
$3$
$2$
$1$
$0$
$\left| {\,\begin{array}{*{20}{c}}0&{p - q}&{p - r}\\{q - p}&0&{q - r}\\{r - p}&{r - q}&0\end{array}\,} \right| = $
જો $\left| {\begin{array}{*{20}{c}}
{^9{C_4}}&{^9{C_5}}&{^{10}{C_r}} \\
{^{10}{C_6}}&{^{10}{C_7}}&{^{11}{C_{r + 2}}} \\
{^{11}{C_8}}&{^{11}{C_9}}&{^{12}{C_{r + 4}}}
\end{array}} \right| = 0$ હોય તો $r$ મેળવો.
જો સમીકરણની સંહતિ $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y + 3z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $\lambda $ ની કિમત મેળવો.
સમીકરણ સંહતિઓ $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ ને શૂન્યતર ઉકેલ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે ?
જો $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$ તો $x =$