3 and 4 .Determinants and Matrices
easy

If $A = \left[ {\begin{array}{*{20}{c}}1&{\tan \theta /2}\\{ - \tan \theta /2}&1\end{array}} \right]$ and $AB = I$, then $B = $

A

${\cos ^2}\frac{\theta }{2}.A$

B

${\cos ^2}\frac{\theta }{2}.{A^T}$

C

${\cos ^2}\frac{\theta }{2}.I$

D

None of these

Solution

(b) $|A| = 1 + {\tan ^2}\frac{\theta }{2} = {\sec ^2}\frac{\theta }{2}$

$AB = I$ $ \Rightarrow $ $B = I{A^{ – 1}}$

$\frac{{\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\,\,\left[ {\begin{array}{*{20}{c}}1&{ – \tan \frac{\theta }{2}}\\{\tan \frac{\theta }{2}}&1\end{array}} \right]}}{{{{\sec }^2}\frac{\theta }{2}}}$= ${\cos ^2}\frac{\theta }{2}\,.\,{A^T}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.