If $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ then $(\alpha ,\beta ) = $

  • A

    $(3,\,4)$

  • B

    $(4,\,3)$

  • C

    $( - 3,\,4)$

  • D

    $(3,\, - 4)$

Similar Questions

If $cosA + cosB = cosC,\ sinA + sinB = sinC$ then the value of expression $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ is

$\frac{{\sec 8A - 1}}{{\sec 4A - 1}} = $

Let $\alpha ,\beta $ be such that $\pi < (\alpha - \beta ) < 3\pi $. If $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ and $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ then the value of $\cos \frac{{\alpha - \beta }}{2}$ is

  • [AIEEE 2004]

If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to

The value of $\cos 15^\circ - \sin 15^\circ $ is equal to