If $\frac{{2\sin \alpha }}{{\{ 1 + \cos \alpha + \sin \alpha \} }} = y,$ then $\frac{{\{ 1 - \cos \alpha + \sin \alpha \} }}{{1 + \sin \alpha }} = $

  • A

    $\frac{1}{y}$

  • B

    $y$

  • C

    $1 - y$

  • D

    $1 + y$

Similar Questions

Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$

If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to

$\frac{{\sec \,8\theta  - 1}}{{\sec \,4\theta  - 1}}$ is equal to

If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :

If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$