If $\frac{{2\sin \alpha }}{{\{ 1 + \cos \alpha + \sin \alpha \} }} = y,$ then $\frac{{\{ 1 - \cos \alpha + \sin \alpha \} }}{{1 + \sin \alpha }} = $
$\frac{1}{y}$
$y$
$1 - y$
$1 + y$
Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$
If $90^\circ < A < 180^\circ $ and $\sin A = \frac{4}{5},$ then $\tan \frac{A}{2}$ is equal to
$\frac{{\sec \,8\theta - 1}}{{\sec \,4\theta - 1}}$ is equal to
If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :
If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$