If $\tan A = \frac{1}{2},$ then $\tan 3A = $

  • A

    $\frac{9}{2}$

  • B

    $\frac{{11}}{2}$

  • C

    $\frac{7}{2}$

  • D

    $ - \frac{1}{2}$

Similar Questions

The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$

The expression,$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ when simplified reduces to :

If $\tan \alpha = \frac{1}{7},\;\tan \beta = \frac{1}{3},$ then $\cos 2\alpha = $

If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $

  • [IIT 1980]

Prove that $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$