If $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ then the value of $\tan \,2A$ in terms of $p$ and $q$ is

  • A

    $\frac{{p + q}}{{p - q}}$

  • B

    $\frac{{p - q}}{{1 + pq}}$

  • C

    $\frac{{p + q}}{{1 - pq}}$

  • D

    $\frac{{1 + pq}}{{1 - p}}$

Similar Questions

Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :

If $\theta $ is an acute angle and $\sin \frac{\theta }{2} = \sqrt {\frac{{x - 1}}{{2x}}} $, then $\tan \theta $ is equal to

If $\alpha $ is a root of $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $, then $\sin 2\alpha $ is equal to

${\rm{cosec }}A - 2\cot 2A\cos A = $