If $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ then the value of $\tan \,2A$ in terms of $p$ and $q$ is

  • A

    $\frac{{p + q}}{{p - q}}$

  • B

    $\frac{{p - q}}{{1 + pq}}$

  • C

    $\frac{{p + q}}{{1 - pq}}$

  • D

    $\frac{{1 + pq}}{{1 - p}}$

Similar Questions

If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $

If $\alpha + \beta = \frac{\pi }{2}$ and $\beta + \gamma = \alpha ,$ then $\tan \,\alpha $ equals

  • [IIT 2001]

$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $

The value of $cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ is :

If $x = \cos 10^\circ \cos 20^\circ \cos 40^\circ ,$ then the value of $x$ is