If $\tan \theta = t,$ then $\tan 2\theta + \sec 2\theta = $

  • A

    $\frac{{1 + t}}{{1 - t}}$

  • B

    $\frac{{1 - t}}{{1 + t}}$

  • C

    $\frac{{2t}}{{1 - t}}$

  • D

    $\frac{{2t}}{{1 + t}}$

Similar Questions

If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $

$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $

If $x + \frac{1}{x} = 2\,\cos \theta ,$ then ${x^3} + \frac{1}{{{x^3}}} = $

$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $

If a $cos^3 \alpha + 3a \,cos\, \alpha \, sin^2\, \alpha = m$ and  $asin^3\, \alpha + 3a \, cos^2\, \alpha \,sin\, \alpha = n$ . Then $(m + n)^{2/3} + (m - n)^{2/3}$ is equal to :