If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be
$2\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
$4\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
$\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
$8\,\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$
${\rm{cosec }}A - 2\cot 2A\cos A = $
If $3\cos \theta + 4\sin \theta = 5$ then $3\sin \theta - 4\cos \theta $ is
If $\alpha + \beta + \gamma = 2\pi ,$ then
$\tan 5x\tan 3x\tan 2x = $
$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $