If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be

  • A

    $2\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$

  • B

    $4\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$

  • C

    $\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$

  • D

    $8\,\cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}$

Similar Questions

The value of $cot\, x + cot\, (60^o  + x) + cot\, (120^o  + x)$ is equal to :

If $\tan \theta = t,$ then $\tan 2\theta + \sec 2\theta = $

If $\sin \theta  = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,}  + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then

If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to

$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $