यदि $\tan \theta = t,$ तो $\tan 2\theta + \sec 2\theta = $
$\frac{{1 + t}}{{1 - t}}$
$\frac{{1 - t}}{{1 + t}}$
$\frac{{2t}}{{1 - t}}$
$\frac{{2t}}{{1 + t}}$
सिद्ध कीजिए $\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$
यदि ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$ तब $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $
${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $
यदि $\cos \theta = \frac{3}{5}$ तथा $\cos \phi = \frac{4}{5},$ जहाँ $\theta $ तथा $\phi $ धनात्मक न्यूनकोण हैं, तो $\cos \frac{{\theta - \phi }}{2} = $
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ बराबर है