જો $A + B + C = {180^o},$ તો $(\cot B + \cot C)$ $(\cot C + \cot A)\,\,(\cot A + \cot B) = . . . .$
$\sec A\,\sec B\,\sec C$
${\rm{cosec}}\,A\,{\rm{cosec}}\,B\,{\rm{cosec}}\,C$
$\tan A\,\tan B\,\tan C$
$1$
$\sin {20^o}\,\sin {40^o}\,\sin {60^o}\,\sin {80^o} = $
$\cot {70^o} + 4\cos {70^o} = . . .$
$\sin {163^o}\cos {347^o} + \sin {73^o}\sin {167^o} = $
$(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ =
${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $