3.Trigonometrical Ratios, Functions and Identities
medium

यदि $A + B + C = {180^o},$ तब $(\cot B + \cot C)\,(\cot C + \cot A)$ $(\cot A + \cot B)$ का मान होगा

A

$\sec A\,\sec B\,\sec C$

B

${\rm{cosec}}\,A\,{\rm{cosec}}\,B\,{\rm{cosec}}\,C$

C

$\tan A\,\tan B\,\tan C$

D

$1$

Solution

(b) $\cot B + \cot C = \frac{{\sin C\,\cos B + \sin B\,\cos C}}{{\sin B\,\sin C}}$

$ = \frac{{\sin (B + C)}}{{\sin B\,\sin C}}$

$ = \frac{{\sin ({{180}^o} – A)}}{{\sin B\,\sin C}}$

$ = \frac{{\sin A}}{{\sin B\sin C}}$

इसी प्रकार, $\cot C + \cot A = \frac{{\sin B}}{{\sin C\sin A}}$

एवं $\cot A + \cot B = \frac{{\sin C}}{{\sin A\sin B}}$

अत: $(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)$

$ = \frac{{\sin A}}{{\sin B\sin C}}.\frac{{\sin B}}{{\sin C\sin A}}.\frac{{\sin C}}{{\sin A\sin B}}$

$ = \cos {\rm{ec}}A\cos {\rm{ec}}B\cos {\rm{ec}}C.$ 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.