3.Trigonometrical Ratios, Functions and Identities
easy

If $\frac{{3\pi }}{4} < \alpha < \pi ,$ then $\sqrt {{\rm{cose}}{{\rm{c}}^2}\alpha + 2\cot \alpha } $ is equal to

A

$1 + \cot \alpha $

B

$1 - \cot \alpha $

C

$ - 1 - \cot \alpha $

D

$ - 1 + \cot \alpha $

Solution

(c) $\sqrt {{\rm{cose}}{{\rm{c}}^2}\alpha + 2\cot \alpha } $

$= \sqrt {1 + {{\cot }^2}\alpha + 2\cot \alpha } = \,\,|1 + \cot \alpha |$ 

But $\frac{{3\pi }}{4} < \alpha < \pi \Rightarrow \cot \alpha < – 1 $

$\Rightarrow 1 + \cot \alpha < 0$ 

Hence, $|1 + \cot \alpha | = – (1 + \cot \alpha )$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.