Trigonometrical Equations
easy

यदि $1 + \cot \theta  = {\rm{cosec}}\theta $, तो $\theta $ का व्यापक मान है

A

$n\pi + \frac{\pi }{2}$

B

$2n\pi - \frac{\pi }{2}$

C

$2n\pi + \frac{\pi }{2}$

D

इनमें से कोई नहीं

Solution

$\frac{1}{{\sin \theta }} = 1 + \frac{{\cos \theta }}{{\sin \theta }}$

$\Rightarrow \sin \theta  + \cos \theta  = 1$

$ \Rightarrow $ $\cos \left( {\theta  – \frac{\pi }{4}} \right)\, = \cos \frac{\pi }{4} $

$\Rightarrow \theta  – \frac{\pi }{4} = 2n\pi  \pm \frac{\pi }{4}$

$\therefore $ $\theta  = 2n\pi $ या $\theta  = 2n\pi  + \frac{\pi }{2}$

किन्तु $\theta  = 2n\pi $ संभव नहीं है।

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.