यदि समीकरण $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ के लिए हल समान्तर श्रेणी में हों, तो अंकिक रूप से न्यूनतम सार्वान्तर होगा
$\frac{\pi }{{p + q}}$
$\frac{{2\pi }}{{p + q}}$
$\frac{\pi }{{2(p + q)}}$
$\frac{1}{{p + q}}$
यदि $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13}$ है, जहाँ $x$ तथा $y$ दोनों द्वितीय चतुर्थांश में स्थित हों तो $\sin (x+y)$ का मान ज्ञात कीजिए।
यदि $\cos 2\theta + 3\cos \theta = 0$, तो $\theta $ का व्यापक मान है
समीकरण $\sin x=\frac{\sqrt{3}}{2}$ का मुख्य हल ज्ञात कीजिए।
हर धनात्मक वास्तविक संख्या $\lambda$ के लिए मान लीजिए कि $A_\lambda$ उन सभी प्राकृतिक संख्याओं $n$ का समुच्चय है जो $|\sin (\sqrt{n+1})-\sin (\sqrt{n})| < \lambda$ को संतुष्ट करती है. यदि $A_\lambda^c$, प्राकृतिक संख्याओं के समुच्चय में $A_\lambda$ का पूरक है तो
यदि $\sec x\cos 5x + 1 = 0$, जहाँ $0 < x < 2\pi $, तो $x =$