यदि समीकरण $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ के लिए हल समान्तर श्रेणी में हों, तो अंकिक रूप से न्यूनतम सार्वान्तर होगा
$\frac{\pi }{{p + q}}$
$\frac{{2\pi }}{{p + q}}$
$\frac{\pi }{{2(p + q)}}$
$\frac{1}{{p + q}}$
यदि $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )$, तब $\sin \left( {\theta + \frac{\pi }{4}} \right)$ का मान होगा
मान लीजिए $S=\{x \in R : \cos (x)+\cos (\sqrt{2} x) < 2\}$, तब
$A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ और $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ दो समूह होते हैं। तब
यदि $\cos A\,\,\sin \left( {A - \frac{\pi }{6}} \right)$ का मान अधिकतम है, तो $A$ का मान है
यदि समीकरण $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ के $\theta$ में वास्तविक हल है, तो $\lambda$ निम्न में से किस अन्तराल में स्थित है ?