The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is
$2$
$3$
$4$
$5$
$\sin x = \frac{1}{3}only.$
The solution of $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is
If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to
If $5{\cos ^2}\theta + 7{\sin ^2}\theta – 6 = 0$, then the general value of $\theta $ is
Let $f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x$ $+C \cos 2 x+D \cos x+E$, and
$T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)+\ldots+f\left(\frac{8 \pi}{5}\right)-f\left(\frac{9 \pi}{5}\right) \text {. }$Then, $T$
If $12{\cot ^2}\theta – 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, then the value of $\sin \theta $ is
Confusing about what to choose? Our team will schedule a demo shortly.