The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is
$2$
$3$
$4$
$5$
$\sin x = \frac{1}{3}only.$
If $\cos \theta = \frac{{ – 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are
The general value of $\theta $ satisfying ${\sin ^2}\theta + \sin \theta = 2$ is
If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
The value of expression $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ….. + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + …. + \cos {{44}^o}) + 1}}$ equals
Confusing about what to choose? Our team will schedule a demo shortly.