Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.
$0$
$-2$
$-4$
$12$
If $4{\sin ^4}x + {\cos ^4}x = 1,$ then $x =$
The number of real numbers $\lambda$ for which the equality $\frac{\sin (\lambda \alpha) \quad \cos (\lambda \alpha)}{\sin \alpha}=\lambda-1$,holds for all real $\alpha$ which are not integral multiples of $\pi / 2$ is
The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to
The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta - 20\sin 2\theta = 20p + 35$ , will have a solution is
The equation $3{\sin ^2}x + 10\cos x - 6 = 0$ is satisfied, if