Trigonometrical Equations
hard

Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.

A

$0$

B

$-2$

C

$-4$

D

$12$

(JEE MAIN-2022)

Solution

$8^{2 \sin ^{2} \theta}+8^{2-2 \sin ^{2} \theta}=16$

$y+\frac{64}{y}=16$

$\Rightarrow y =8$

$\Rightarrow \sin ^{2} \theta=1 / 2$

$n ( S )+\sum_{\theta \in S} \frac{1}{\cos (\pi / 4+2 \theta) \sin (\pi / 4+2 \theta)}$

$=4+(-2) \times 4=-4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.