If $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ then $\theta = $

  • A

    $n\pi + \frac{\pi }{4}$

  • B

    $2n\pi \pm \frac{\pi }{4}$

  • C

    $n\pi - \frac{\pi }{4}$

  • D

    $2n\pi \pm \frac{\pi }{6}$

Similar Questions

The number of solutions of equation $3cos^2x - 8sinx = 0$ in $[0, 3\pi]$ is

The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta - 2 \sqrt 2 \, cos \,\theta - 1 = 0$ is

If $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ then $cos( \alpha + \beta)$ is equal to

  • [JEE MAIN 2019]

$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to

If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ then 

  • [JEE MAIN 2020]