If the solution for $\theta $ of $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ are in $A.P.$, then the numerically smallest common difference of $A.P.$ is

  • A

    $\frac{\pi }{{p + q}}$

  • B

    $\frac{{2\pi }}{{p + q}}$

  • C

    $\frac{\pi }{{2(p + q)}}$

  • D

    $\frac{1}{{p + q}}$

Similar Questions

The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is 

The number of solutions of the equation $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ is :

  • [JEE MAIN 2021]

If $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, then $B =$

The general value $\theta $ is obtained from the equation $\cos 2\theta = \sin \alpha ,$ is

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to