The number of solutions of the equation $4 \sin ^2 x-4$ $\cos ^3 \mathrm{x}+9-4 \cos \mathrm{x}=0 ; \mathrm{x} \in[-2 \pi, 2 \pi]$ is :

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $3$

  • C

    $2$

  • D

    $0$

Similar Questions

If $\sin 5x + \sin 3x + \sin x = 0$, then the value of $x$ other than $0$ lying between $0 \le x \le \frac{\pi }{2}$ is

If $2\,cos\,\theta  + sin\, \theta \, = 1$ $\left( {\theta  \ne \frac{\pi }{2}} \right)$ , then $7\, cos\,\theta + 6\, sin\, \theta $ is equal to

  • [JEE MAIN 2014]

If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)

If $x = \frac{{n\pi }}{2}$ , satisfies the equation $sin\, \frac{x}{2}- cos \frac{x}{2} = 1$ $- sin\, x$ & the inequality $\left| {\frac{x}{2}\,\, - \,\,\frac{\pi }{2}} \right|\,\, \le \,\,\frac{{3\pi }}{4}$, then:

Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta  \right) = \tan \,\left( \theta  \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta  \right) = 1} \right\}$ be two sets. Then

  • [JEE MAIN 2013]