If $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, then the general value of $\theta $ is
$\frac{{n\pi }}{3} + \frac{\pi }{{12}}$
$\frac{{n\pi }}{3} + \frac{{7\pi }}{{36}}$
$n\pi + \frac{{7\pi }}{{12}}$
$n\pi + \frac{\pi }{{12}}$
If $\mathrm{n}$ is the number of solutions of the equation
$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$
and $S$ is the sum of all these solutions, then the ordered pair $(\mathrm{n}, \mathrm{S})$ is :
Let $f(x) = \cos \sqrt {x,} $ then which of the following is true
The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is
For $0<\theta<\frac{\pi}{2}$, the solution(s) of $\sum_{m=1}^6 \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{4}\right)=4 \sqrt{2}$ is(are)
$(A)$ $\frac{\pi}{4}$ $(B)$ $\frac{\pi}{6}$ $(C)$ $\frac{\pi}{12}$ $(D)$ $\frac{5 \pi}{12}$
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval