Trigonometrical Equations
easy

જો $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$\frac{{n\pi }}{3} + \frac{\pi }{{12}}$

B

$\frac{{n\pi }}{3} + \frac{{7\pi }}{{36}}$

C

$n\pi + \frac{{7\pi }}{{12}}$

D

$n\pi + \frac{\pi }{{12}}$

Solution

(b) $\frac{{\tan 3\theta – 1}}{{\tan 3\theta + 1}} = \sqrt 3 $

==> $\frac{{\tan 3\theta – \tan (\pi /4)}}{{1 + \tan 3\theta \,.\,\tan (\pi /4)}} = \sqrt 3 $

==> $\tan \,\left( {3\theta – \frac{\pi }{4}} \right) = \tan \,\frac{\pi }{3}$

==> $3\theta – (\pi /4) = n\pi + (\pi /3)$

==> $3\theta = n\pi + \frac{{7\pi }}{{12}}$

==> $\theta = \frac{{n\pi }}{3} + \frac{{7\pi }}{{36}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.