If $\sin 5x + \sin 3x + \sin x = 0$, then the value of $x$ other than $0$ lying between $0 \le x \le \frac{\pi }{2}$ is

  • A

    $\frac{\pi }{6}$

  • B

    $\frac{\pi }{{12}}$

  • C

    $\frac{\pi }{3}$

  • D

    $\frac{\pi }{4}$

Similar Questions

If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then

If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to

The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is

  • [KVPY 2018]

If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ then 

  • [JEE MAIN 2020]

Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$