The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals

  • [KVPY 2013]
  • A

    $150^{\circ}$

  • B

    $120^{\circ}$

  • C

    $60^{\circ}$

  • D

    $30^{\circ}$

Similar Questions

Find the general solution of the equation $\cos 4 x=\cos 2 x$

The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$

If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

If $\cos ec\,\theta  = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to

  • [JEE MAIN 2014]

If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is