The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals
$150^{\circ}$
$120^{\circ}$
$60^{\circ}$
$30^{\circ}$
The equation $3\cos x + 4\sin x = 6$ has
Find the principal and general solutions of the question $\tan x=\sqrt{3}$.
The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is
If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
The sum of solutions in $x \in (0,2\pi )$ of the equation, $4\cos (x).\cos \left( {\frac{\pi }{3} - x} \right).\cos \left( {\frac{\pi }{3} + x} \right) = 1$ is equal to