Trigonometrical Equations
medium

यदि $|k|\, = 5$ तथा ${0^o} \le \theta  \le {360^o}$, तब 3$\cos \theta  + 4\sin \theta  = k$ के विभिन्न हलों की संख्या होंगी

A

शून्य

B

दो

C

एक

D

अनन्त

Solution

$3\cos \theta  + 4\sin \theta  = 5\,\left[ {\frac{3}{5}\cos \theta  + \frac{4}{5}\sin \theta } \right] = 5\cos (\theta  – \alpha )$

जहाँ $\cos \alpha  = \frac{3}{5}$, $\sin \alpha  = \frac{4}{5}$.

अब $3\cos \theta  + 4\sin \theta  = k$

$\therefore$ $5\cos (\theta  – \alpha ) = k $

$\Rightarrow \cos (\theta  – \alpha ) =  \pm 1$

$ \Rightarrow $ $\theta  – \alpha  = {0^o},\,{180^o} $

$\Rightarrow \theta  = \alpha ,\,{\rm{ }}{180^o} + \alpha $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.