- Home
- Standard 11
- Mathematics
Trigonometrical Equations
medium
यदि $|k|\, = 5$ तथा ${0^o} \le \theta \le {360^o}$, तब 3$\cos \theta + 4\sin \theta = k$ के विभिन्न हलों की संख्या होंगी
A
शून्य
B
दो
C
एक
D
अनन्त
Solution
$3\cos \theta + 4\sin \theta = 5\,\left[ {\frac{3}{5}\cos \theta + \frac{4}{5}\sin \theta } \right] = 5\cos (\theta – \alpha )$
जहाँ $\cos \alpha = \frac{3}{5}$, $\sin \alpha = \frac{4}{5}$.
अब $3\cos \theta + 4\sin \theta = k$
$\therefore$ $5\cos (\theta – \alpha ) = k $
$\Rightarrow \cos (\theta – \alpha ) = \pm 1$
$ \Rightarrow $ $\theta – \alpha = {0^o},\,{180^o} $
$\Rightarrow \theta = \alpha ,\,{\rm{ }}{180^o} + \alpha $.
Standard 11
Mathematics