यदि $|k|\, = 5$ तथा ${0^o} \le \theta \le {360^o}$, तब 3$\cos \theta + 4\sin \theta = k$ के विभिन्न हलों की संख्या होंगी
शून्य
दो
एक
अनन्त
मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$
यदि समीकरण निकाय $2 \sin ^2 \theta-\cos 2 \theta=0$ तथा $2 \cos ^2 \theta+3 \sin \theta=0$ के अंतराल $[0,2 \pi]$ में हलों का योगफल $k \pi$ है, तो $k$ बराबर है $......$
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sin x+\sin 3 x+\sin 5 x=0$
यदि $\sin 2x + \sin 4x = 2\sin 3x,$ तब $x = $
यदि $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots . \ldots\right) \log _{c} 2}$ समीकरण $t ^{2}-9 t +8=0$, को संतुष्ट करता है, तो $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ का मान है