જો $|k|\, = 5$ અને ${0^o} \le \theta \le {360^o}$, તો સમીકરણ $3\cos \theta + 4\sin \theta = k$ ની કેટલા ભિન્ન ઉકેલ શક્ય છે ?
$0$
$2$
$1$
અનંત
વિધાન $-1:$ ત્રિકોણમિતીય સમીકરણો $2\,sin^2\,\theta - cos\,2\theta = 0$ અને $2 \,cos^2\,\theta - 3\,sin\,\theta = 0$ ના અંતરાલ $[0, 2\pi ]$ માં બે સામાન્ય ઉકેલો મળે છે.
વિધાન $-2:$ સમીકરણ $2\,cos^2\,\theta - 3\,sin\,\theta = 0$ ના અંતરાલ $[0, \pi ]$ માં 2 ઉકેલો મળે
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin x+\sin 3 x+\sin 5 x=0$
જો ચલ $\theta$ માં સમીકરણ $3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (જ્યાં $\alpha$ એ અચળ છે) ને વાસ્તવિક ઉકેલ ન હોય તો $\alpha$ ની કિમત મેળવો. (અહી $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ બંને વ્યાખીયાયિત છે)
$sin^{2n}x + cos^{2n}x$ ની કિમત ............. ની વચ્ચે હોય
સમીકરણ $2^x + x = 2^{sin \ x} + \sin x$ ના $[0,10\pi ]$ માં કુલ કેટલા ઉકેલો મળે ?