Solve $\cos x=\frac{1}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $\cos x=\frac{1}{2}=\cos \frac{\pi}{3}$

Therefore $\quad x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

Similar Questions

The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is

  • [KVPY 2012]

The smallest positive values of $x$ and $y$ which satisfy $\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ are

The number of integral value $(s)$ of $'p'$ for which the equation $99\cos 2\theta  - 20\sin 2\theta  = 20p + 35$ , will have a solution is 

If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is

  • [IIT 1963]

The number of solutions of the equation $\sin x=$ $\cos ^{2} x$ in the interval $(0,10)$ is

  • [JEE MAIN 2022]