If ${\tan ^2}\theta - (1 + \sqrt 3 )\tan \theta + \sqrt 3 = 0$, then the general value of $\theta $ is

  • A

    $n\pi + \frac{\pi }{4},n\pi + \frac{\pi }{3}$

  • B

    $n\pi - \frac{\pi }{4},n\pi + \frac{\pi }{3}$

  • C

    $n\pi + \frac{\pi }{4},n\pi - \frac{\pi }{3}$

  • D

    $n\pi - \frac{\pi }{4},n\pi - \frac{\pi }{3}$

Similar Questions

Let $\theta, 0 < \theta < \pi / 2$, be an angle such that the equation $x ^2+4 x \cos \theta+\cot \theta=0$ has equal roots for $x$. Then $\theta$ in radians is

  • [KVPY 2021]

For $0<\theta<\frac{\pi}{2}$, the solution(s) of $\sum_{m=1}^6 \operatorname{cosec}\left(\theta+\frac{(m-1) \pi}{4}\right) \operatorname{cosec}\left(\theta+\frac{m \pi}{4}\right)=4 \sqrt{2}$ is(are)

$(A)$ $\frac{\pi}{4}$ $(B)$ $\frac{\pi}{6}$ $(C)$ $\frac{\pi}{12}$ $(D)$ $\frac{5 \pi}{12}$

  • [IIT 2009]

Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is

The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is

Number of solutions of equation $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$ in $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$  is

(where $sgn(.)$ denotes signum function) -