यदि $\cos \theta = \frac{{ - 1}}{2}$और ${0^o} < \theta < {360^o}$, तब $\theta $ का मान होगा
${120^o}$ तथा ${300^o}$
${60^o}$ तथा${120^o}$
${120^o}$ तथा ${240^o}$
${60^o}$ तथा ${240^o}$
समीकरण $\frac{\cos x }{1+\sin x }=|\tan 2 x |$, $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ के हलो का योग है
यदि $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ तब $\theta = $
समीकरणों $\tan \theta = - 1$ तथा $\cos \theta = \frac{1}{{\sqrt 2 }}$ को सन्तुष्ट करने वाला $\theta $ का सर्वव्यापक मान है
निम्न समीकरण में वास्तविक हलों $x$ की संख्या होगी: $\cos ^2(x \sin (2 x))+\frac{1}{1+x^2}=\cos ^2 x+\sec ^2 x$
समुच्चय $S=\left\{\theta \epsilon[-4 \pi, 4 \pi]: 3 \cos ^2 2 \theta+\right.$ $6 \cos 2 \theta-10 \cos ^2 \theta+5=0$ में अवयवों की संख्या है $........$