Trigonometrical Equations
medium

यदि ${\sin ^2}\theta  - 2\cos \theta  + \frac{1}{4} = 0,$ तो $\theta $ का व्यापक मान है

A

$n\pi \pm \frac{\pi }{3}$

B

$2n\pi \pm \frac{\pi }{3}$

C

$2n\pi \pm \frac{\pi }{6}$

D

$n\pi \pm \frac{\pi }{6}$

Solution

$1 – {\cos ^2}\theta  – 2\cos \theta  + \frac{1}{4} = 0$

$ \Rightarrow $  ${\cos ^2}\theta  + 2\cos \theta  – \frac{5}{4} = 0$

$ \Rightarrow $  $\cos \theta  = \frac{{ – 2 \pm \sqrt {4 + 5} }}{2} =  – 1 \pm \frac{3}{2}$

$\because$ $|\cos \theta |\, \le 1$,

$\because$ $\cos \theta  =  – 1 – \frac{3}{2}$ संभव नहीं है।

$ \Rightarrow $ $\cos \theta  =  – 1 + \frac{3}{2} = \frac{1}{2} = \cos \left( {\frac{\pi }{3}} \right)$

$ \Rightarrow $  $\theta  = 2n\pi  \pm \frac{\pi }{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.