Trigonometrical Equations
normal

જો $\cos \theta = \frac{{ - 1}}{2}$ અને ${0^o} < \theta < {360^o}$ તો $\theta $ ની કિમતો મેળવો.

A

${120^o}$ અને ${300^o}$

B

${60^o}$ અને ${120^o}$

C

${120^o}$ અને ${240^o}$

D

${60^o}$ અને ${240^o}$

Solution

(c) Given, $\cos \theta = \frac{{ – 1}}{2}$ and ${0^o} < \theta < {360^o}$.

We know that $\cos {60^o} = \frac{1}{2}$ and $\cos ({180^o} – {60^o})$ $ = – \cos {60^o} = – \frac{1}{2}$ or $\cos {120^o} = – \frac{1}{2}$.

Similarly $\cos ({180^o} + {60^o})$ $ = – \cos {60^o} = – \frac{1}{2}$

or $\cos {240^o} = – \frac{1}{2}.$

Therefore $\theta = {120^o}$ and ${240^o}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.