જો $\cos \theta = \frac{{ - 1}}{2}$ અને ${0^o} < \theta < {360^o}$ તો $\theta $ ની કિમતો મેળવો.
${120^o}$ અને ${300^o}$
${60^o}$ અને ${120^o}$
${120^o}$ અને ${240^o}$
${60^o}$ અને ${240^o}$
જો $\sin (A + B) =1$ અને $\cos (A - B) = \frac{{\sqrt 3 }}{2} $ તો $A$ અને $B$ ની ન્યૂનતમ ધન કિમત મેળવો.
સમીકરણ $\sqrt[3]{{\sin \theta - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta + 1}} = 0$ ના $[0,4\pi]$ માં ઉકેલોની સંખ્યા મેળવો.
જો કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.
જો $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$ તો $B =$
જો સમીકરણ $2tan\ x \ sin\ x -2 tan\ x + cos\ x = 0$ ને $k$ ઉકેલો $[0,k \pi]$ માં મળે તો $k$ ની પૂર્ણાક કિમતોની સંખ્યા મેળવો.