જો $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ તો $\theta = $
$\frac{\pi }{6},\frac{\pi }{3}$
$\frac{\pi }{6},\frac{{5\pi }}{6}$
$\frac{\pi }{3},\frac{\pi }{4}$
$\frac{\pi }{2},\pi $
જો $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$ તો $B =$
ત્રિપુટી $(a_1 , a_2 , a_3)$ ના બધા શક્ય ઉકેલોની સંખ્યા ................. મળે કે જેથી બધા $x$ માટે $a_1+ a_2 \,cos \, 2x + a_3 \, sin^2 x = 0$ થાય
સમીકરણ $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ નું સમાધાન કરે તેવી $\theta $ ની ${0^o}$ અને ${360^o}$ વચ્ચેની કિમતો મેળવો.
અંતરાલ $[0, 5\pi ]$ માં સમીકરણ $sin\, 2x - 2\,cos\,x+ 4\,sin\, x\, = 4$ ના ઉકેલો ની સંખ્યા મેળવો.
સમીકરણ ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ નો વ્યાપક ઉકેલ મેળવો.