No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$
$3$
$4$
$2$
$1$
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
The set of angles btween $0$ & $2\pi $ satisfying the equation $4\, cos^2 \, \theta – 2 \sqrt 2 \, cos \,\theta – 1 = 0$ is
If $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x – \alpha ),$ then $x = $
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x – 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
If $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ then $\theta = $
Confusing about what to choose? Our team will schedule a demo shortly.