If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $

  • [IIT 2004]
  • A

    $\left( {\frac{\pi }{3},\,\frac{\pi }{2}} \right)$

  • B

    $\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)$

  • C

    $\left( {\frac{{2\pi }}{3},\,\frac{{5\pi }}{6}} \right)$

  • D

    $\left( {\frac{{5\pi }}{6},\pi } \right)$

Similar Questions

If $\cos 2\theta + 3\cos \theta = 0$, then the general value of $\theta $ is

Find the general solution of $\cos ec\, x=-2$

If $\tan m\theta = \tan n\theta $, then the general value of $\theta $ will be in

The set of values of $x$ for which the expression $\frac{{\tan 3x - \tan 2x}}{{1 + \tan 3x\tan 2x}} = 1$, is

The number of elements in the set $S =\left\{\theta \in[0,2 \pi]: 3 \cos ^4 \theta-5 \cos ^2 \theta-2 \sin ^2 \theta+2=0\right\}$ is $...........$.

  • [JEE MAIN 2023]