If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is
$(2n + 1)\frac{\pi }{4}$
$(2n + 1)\frac{\pi }{{10}}$
$n\pi + \frac{\pi }{2}$or $\frac{{n\pi }}{5} + \frac{\pi }{{10}}$
None of these
The equation $\sin x + \cos x = 2$has
The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is
The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
If $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, then $\theta = $