यदि $\sec 4\theta - \sec 2\theta = 2$, तो $\theta $ का व्यापक मान है
$(2n + 1)\frac{\pi }{4}$
$(2n + 1)\frac{\pi }{{10}}$
$n\pi + \frac{\pi }{2}$or $\frac{{n\pi }}{5} + \frac{\pi }{{10}}$
इनमें से कोई नहीं
यदि $\cot \theta + \tan \theta = 2{\rm{cosec}}\theta $, तो $\theta $ के व्यापक मान हैं
यदि $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, तब $\theta $ का व्यापक मान होगा
$[0,2 \pi]$ में $\alpha$ के उन मानों की संख्या, जिनके लिए $2 \sin ^{3} \alpha-7 \sin ^{2} \alpha+7 \sin \alpha=2$ है
त्रिभुज $P Q R$ में, $P$ वृहत्तम कोण है तथा $\cos P=\frac{1}{3}$ । इसके अतिरिक्त त्रिभुज का अन्तःवृत्त भुजाओं $P Q, Q R$ तथा $R P$ को क्रमशः $N, L$ तथा $M$ पर इस तरह स्पर्श करता है कि $P N, Q L$ तथा $R M$ की लम्बाईयाँ क्रमागत सम पूर्ण संख्याएं है। तब त्रिभुज की भुजा (भुजाओं) की सम्भावित लम्बाई (लम्बाईयाँ) है (हैं)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$
किसी त्रिभुज के कोण $\alpha, \beta, \gamma$ समीकरण $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ और $3 \sin \beta+2 \cos \alpha=1$ को संतुष्ट करते हैं। तब कोण $\gamma$ है -