If $\alpha ,$ $\beta$ are different values of $x$ satisfying $a\cos x + b\sin x = c,$ then $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $

  • A

    $a + b$

  • B

    $a - b$

  • C

    $\frac{b}{a}$

  • D

    $\frac{a}{b}$

Similar Questions

The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi  + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi  + x}}{3}} \right) = 1$ is

If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$

The equation $\sin x + \sin y + \sin z = - 3$ for $0 \le x \le 2\pi ,$ $0 \le y \le 2\pi ,$ $0 \le z \le 2\pi $, has

The number of  $x \in  [0,2\pi ]$  for which $\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x}  - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ is

  • [JEE MAIN 2016]

If $K = sin^6x + cos^6x$, then $K$ belongs to the interval