यदि $\alpha ,$ $\beta$ समीकरण $a\cos x + b\sin x = c,$ को सन्तुष्ट करने वाले $x$ के भिन्न मान हैं, तब $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $
$a + b$
$a - b$
$\frac{b}{a}$
$\frac{a}{b}$
त्रिकोणमितीय समीकरण $\tan \theta = \cot \alpha $ का व्यापक हल है
समीकरण $\quad \sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1$, जबकि $x \in\left[0, \frac{\pi}{2}\right]$, के हलों की संख्या है ....... |
यदि $\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ तो $\theta = $
$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं
समीकरण $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ के मूल हैं