Trigonometrical Equations
medium

यदि $\alpha ,$ $\beta$ समीकरण $a\cos x + b\sin x = c,$ को सन्तुष्ट करने वाले  $x$ के भिन्न मान हैं, तब $\tan {\rm{ }}\left( {\frac{{\alpha  + \beta }}{2}} \right) = $

A

$a + b$

B

$a - b$

C

$\frac{b}{a}$

D

$\frac{a}{b}$

Solution

(c) $a\cos x + b\sin x = c$

$ \Rightarrow $ $a\,\left( {\frac{{1 – {{\tan }^2}\,(x/2)}}{{1 + {{\tan }^2}(x/2)}}} \right) + \frac{{2b\tan (x/2)}}{{1 + {{\tan }^2}(x/2)}} = c$

$ \Rightarrow $ $(a + c){\tan ^2}\frac{x}{2} – 2b\tan \frac{x}{2} + (c – a) = 0$

इस समीकरण के मूल $\tan \frac{\alpha }{2}$ तथा $\tan \frac{\beta }{2}$ हैं,

$\therefore $ $\tan \frac{\alpha }{2} + \tan \frac{\beta }{2} = \frac{{2b}}{{a + c}}$ तथा 

$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} = \frac{{c – a}}{{a + c}}$

अब,  $\tan \left( {\frac{\alpha }{2} + \frac{\beta }{2}} \right) = \frac{{\tan \frac{\alpha }{2} + \tan \frac{\beta }{2}}}{{1 – \tan \frac{\alpha }{2}\tan \frac{\beta }{2}}}$

$= \frac{{\frac{{2b}}{{a + c}}}}{{1 – \frac{{c – a}}{{a + c}}}} = \frac{b}{a}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.