यदि $\alpha ,$ $\beta$ समीकरण $a\cos x + b\sin x = c,$ को सन्तुष्ट करने वाले  $x$ के भिन्न मान हैं, तब $\tan {\rm{ }}\left( {\frac{{\alpha  + \beta }}{2}} \right) = $

  • A

    $a + b$

  • B

    $a - b$

  • C

    $\frac{b}{a}$

  • D

    $\frac{a}{b}$

Similar Questions

त्रिकोणमितीय समीकरण $\tan \theta  = \cot \alpha $ का व्यापक हल है

समीकरण $\quad \sqrt{3}\left(\cos ^{2} x\right)=(\sqrt{3}-1) \cos x+1$, जबकि $x \in\left[0, \frac{\pi}{2}\right]$, के हलों की संख्या है ....... |

  • [JEE MAIN 2021]

यदि $\sin 6\theta  + \sin 4\theta  + \sin 2\theta  = 0,$ तो $\theta  = $

$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं

समीकरण $1 - \cos \theta  = \sin \theta .\sin \frac{\theta }{2}$ के मूल हैं