The number of solutions of the equation $\sqrt[3]{{\sin \theta  - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta  + 1}} = 0$ in $[0,4\pi]$ is 

  • A

    $2$

  • B

    $4$

  • C

    $5$

  • D

    $6$

Similar Questions

Prove that

$\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$

The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ is $R$ is equal to

  • [JEE MAIN 2022]

If $\cos {40^o} = x$ and $\cos \theta = 1 - 2{x^2}$, then the possible values of $\theta $ lying between ${0^o}$ and ${360^o}$is

The number of solutions of the equation $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ is :

  • [JEE MAIN 2021]

If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is