Trigonometrical Equations
normal

The number of solutions of the equation $\sqrt[3]{{\sin \theta  - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta  + 1}} = 0$ in $[0,4\pi]$ is 

A

$2$

B

$4$

C

$5$

D

$6$

Solution

$(\sin \theta-1)^{1 / 3}+(\sin \theta+1)^{1 / 3}=-(\sin \theta)^{1 / 3}$

$2 \sin \theta+3\left(-\cos ^{2} \theta\right)^{1 / 3}(-\sin \theta)^{1 / 3}=-\sin \theta$

$3\left(\cos ^{2} \theta\right)^{1 / 3} \cdot(\sin \theta)^{1 / 3}=-\sin \theta$

$(\sin \theta)^{1 / 3}\left(3\left(\cos ^{2} \theta\right)^{1 / 3}+(\sin \theta)^{2 / 3}\right)=0$

$\sin \theta=0 \Rightarrow 5 \text { roots for } \theta \in[0,4 \pi]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.