If $P$ is a point on the hyperbola $16{x^2} - 9{y^2} = 144$ whose foci are ${S_1}$ and ${S_2}$, then $P{S_1}- P{S_2} = $

  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $12$

Similar Questions

Eccentricity of the hyperbola conjugate to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$ is

For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remains constant with change in $'\alpha '$

  • [IIT 2003]

Let $e_1$ be the eccentricity of the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ and $e_2$ be the eccentricity of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$, which passes through the foci of the hyperbola. If $e_1 e_2=1$, then the length of the chord of the ellipse parallel to the $\mathrm{x}$-axis and passing through $(0,2)$ is :

  • [JEE MAIN 2024]

A square $ABCD$ has all its vertices on the curve $x ^{2} y ^{2}=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of $ABCD$ is

  • [JEE MAIN 2021]

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to

  • [AIEEE 2012]