- Home
- Standard 11
- Mathematics
Locus of mid points of chords of hyperbola $x^2 -y^2 = a^2$ which are tangents to the parabola $x^2 = 4by$ will be -
dependent on both $a$ and $b.$
independent of both $a$ and $b.$
dependent on $a$ but independent of $b.$
independent of $a$ but dependent on $b.$
Solution
Let mid point be $(\mathrm{h}, \mathrm{k})$
chord of hyperbola: $\mathrm{hx}-\mathrm{ky}=\mathrm{h}^{2}-\mathrm{k}^{2}$
this is tangent to $\mathrm{x}^{2}=4 \mathrm{by}$
form of tangent for parabola: $\mathrm{y}=\mathrm{mx}-\mathrm{bm}^{2}$
comparing we get
$\mathrm{m}=\frac{\mathrm{h}}{\mathrm{k}} ;-\mathrm{bm}^{2}=-\left(\frac{\mathrm{h}^{2}-\mathrm{k}^{2}}{\mathrm{k}}\right)$
$\therefore \mathrm{b}\left(\frac{\mathrm{h}^{2}}{\mathrm{k}^{2}}\right)=-\left(\frac{\mathrm{h}^{2}-\mathrm{k}^{2}}{\mathrm{k}}\right)$
clearly, locus is dependent on $b,$ but not $a$