If $\theta $ and $\phi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then $\theta - \phi $ is equal to

  • A

    $ \pm \frac{\pi }{2}$

  • B

    $ \pm \pi $

  • C

    $0$

  • D

    None of these

Similar Questions

The line $lx + my - n = 0$ will be tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

The co-ordinates of the foci of the ellipse $3{x^2} + 4{y^2} - 12x - 8y + 4 = 0$ are

If tangents are drawn from point $P(3\ sin\theta + 4\ cos\theta , 3\ cos\theta\ -\ 4\ sin\theta)$ , $\theta = \frac {\pi}{8}$ to the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ then angle between the tangents is

The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y = 12$, is

Let $S = 0$ is an ellipse whose vartices are the extremities of minor axis of the ellipse $E:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,a > b$ If $S = 0$ passes through the foci of $E$ , then its eccentricity is (considering the eccentricity of $E$ as $e$ )