Gujarati
10-2. Parabola, Ellipse, Hyperbola
hard

If $\theta $ and $\phi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then $\theta - \phi $ is equal to

A

$ \pm \frac{\pi }{2}$

B

$ \pm \pi $

C

$0$

D

None of these

Solution

(a) Let $y = {m_1}x$ and $y = {m_2}x$ be a pair of conjugate diameters of an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$

and let $P(a\cos \theta ,\,b\sin \theta )$ and $Q(a\cos \phi ,\,b\sin \phi )$ be ends of these two diameters.

Then ${m_1}{m_2} = – \frac{{{b^2}}}{{{a^2}}}$

$ \Rightarrow \frac{{b\sin \theta – 0}}{{a\cos \theta – 0}} \times \frac{{b\sin \phi – 0}}{{a\cos \phi – 0}} = – \frac{{{b^2}}}{{{a^2}}}$

==> $\sin \theta \sin \phi = – \cos \theta \cos \phi $

==> $\cos (\theta – \phi ) = 0$

$\Rightarrow \theta – \phi = \pm \frac{\pi }{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.