10-2. Parabola, Ellipse, Hyperbola
medium

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$

Option A
Option B
Option C
Option D

Solution

Vertices $(\pm 6,\,0),$ foci $(±4,\,0)$

Here, the vertices are on the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $a=6, \,c=4$

It is known as $a^{2}=b^{2}+c^{2}$

$\therefore 6^{2}=b^{2}+4^{2}$

$\Rightarrow 36=b^{2}+16$

$\Rightarrow b^{2}=36-16$

$\Rightarrow b=\sqrt{20}$

Thus, the equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1$ or $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.