Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$
Vertices $(\pm 6,\,0),$ foci $(±4,\,0)$
Here, the vertices are on the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a=6, \,c=4$
It is known as $a^{2}=b^{2}+c^{2}$
$\therefore 6^{2}=b^{2}+4^{2}$
$\Rightarrow 36=b^{2}+16$
$\Rightarrow b^{2}=36-16$
$\Rightarrow b=\sqrt{20}$
Thus, the equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1$ or $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$
Let $E_1$ and $E_2$ be two ellipses whose centers are at the origin. The major axes of $E_1$ and $E_2$ lie along the $x$-axis and the $y$-axis, respectively. Let $S$ be the circle $x^2+(y-1)^2=2$. The straight line $x+y=3$ touches the curves $S, E_1$ ad $E_2$ at $P, Q$ and $R$, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$. If $e_1$ and $e_2$ are the eccentricities of $E_1$ and $E_2$, respectively, then the correct expression$(s)$ is(are)
$(A)$ $e_1^2+e_2^2=\frac{43}{40}$
$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$
$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$
$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$
Extremities of the latera recta of the ellipses $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,1\,$ $(a > b)$ having a given major axis $2a$ lies on
If a number of ellipse be described having the same major axis $2a$ but a variable minor axis then the tangents at the ends of their latera recta pass through fixed points which can be
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
If the line $x\cos \alpha + y\sin \alpha = p$ be normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then