- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
medium
Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$
Option A
Option B
Option C
Option D
Solution
Vertices $(\pm 6,\,0),$ foci $(±4,\,0)$
Here, the vertices are on the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.
Accordingly, $a=6, \,c=4$
It is known as $a^{2}=b^{2}+c^{2}$
$\therefore 6^{2}=b^{2}+4^{2}$
$\Rightarrow 36=b^{2}+16$
$\Rightarrow b^{2}=36-16$
$\Rightarrow b=\sqrt{20}$
Thus, the equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1$ or $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$
Standard 11
Mathematics