If $x = 9$ is the chord of contact of the hyperbola ${x^2} - {y^2} = 9$, then the equation of the corresponding pair of tangents is
$9{x^2} - 8{y^2} + 18x - 9 = 0$
$9{x^2} - 8{y^2} - 18x + 9 = 0$
$9{x^2} - 8{y^2} - 18x - 9 = 0$
$9{x^2} - 8{y^2} + 18x + 9 = 0$
An ellipse inscribed in a semi-circle touches the circular arc at two distinct points and also touches the bounding diameter. Its major axis is parallel to the bounding diameter. When the ellipse has the maximum possible area, its eccentricity is
Find the equation for the ellipse that satisfies the given conditions: Length of minor axis $16$ foci $(0,\,±6)$
If $m$ is the slope of a common tangent to the curves $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and $x^{2}+y^{2}=12$, then $12\; m ^{2}$ is equal to
Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are
$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$
$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$
$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$
$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$
The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are