If $f(x + ay,\;x - ay) = axy$, then $f(x,\;y)$ is equal to
$xy$
${x^2} - {a^2}{y^2}$
$\frac{{{x^2} - {y^2}}}{4}$
$\frac{{{x^2} - {y^2}}}{{{a^2}}}$
Function ${\sin ^{ - 1}}\sqrt x $ is defined in the interval
Which of the following function is surjective but not injective
If $f(x)$ and $g(x)$ are two polynomials such that the polynomial $P ( x )=f\left( x ^{3}\right)+ xg \left( x ^{3}\right)$ is divisible by $x^{2}+x+1,$ then $P(1)$ is equal to ....... .
Let function $f(x) = {x^2} + x + \sin x - \cos x + \log (1 + |x|)$ be defined over the interval $[0, 1]$. The odd extensions of $f(x)$ to interval $[-1, 1]$ is
Tho damnin of tho finction $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ is