The number of one-one function $f :\{ a , b , c , d \} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ such that $2 f(a)-f(b)+3 f(c)+$ $f ( d )=0$ is

  • [JEE MAIN 2022]
  • A

    $32$

  • B

    $31$

  • C

    $22$

  • D

    $89$

Similar Questions

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to

Let $x$ be a non-zero rational number and $y$ be an irrational number. Then $xy$ is

If the domain of the function $f(x)=\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}$ $(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right) \text { is }(\alpha, \beta]$ Then $36|\alpha+\beta|$ is equal to :

  • [JEE MAIN 2023]

If the function $f\,:\,R - \,\{ 1, - 1\}  \to A$ defined by $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}},$ is surjective, then $A$ is equal to

  • [JEE MAIN 2019]

The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-