If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $
$7/6$
$5/6$
$6/7$
$5/7$
Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is
The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is
Range of the function $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ is
For a suitably chosen real constant $a$, let a function, $f: R-\{-a\} \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x} .$ Further suppose that for any real number $x \neq- a$ and $f( x ) \neq- a ,( fof )( x )= x .$ Then $f\left(-\frac{1}{2}\right)$ is equal to
Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.