If $f(x) = 3x - 5$, then ${f^{ - 1}}(x)$
Is given by $\frac{1}{{3x - 5}}$
Is given by $\frac{{x + 5}}{3}$
Does not exist because $f$ is not one-one
Does not exist because $f$ is not onto
The inverse function of $f(\mathrm{x})=\frac{8^{2 \mathrm{x}}-8^{-2 \mathrm{x}}}{8^{2 \mathrm{x}}+8^{-2 \mathrm{x}}}, \mathrm{x} \in(-1,1),$ is
The relation $R$ is defined on the set of natural numbers as $\{(a, b) : a = 2b\}$. Then $\{R^{ - 1}\}$ is given by
If $y = f(x) = \frac{{x + 2}}{{x - 1}}$, then $x = $
Let $S=\{a, b, c\}$ and $T=\{1,2,3\} .$ Find $F^{-1}$ of the following functions $F$ from $S$ to $T$. if it exists. $F =\{( a , 2)\,,(b , 1),\,( c , 1)\}$
The inverse of the function $\frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}$ is