Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that exactly one of them problem
Probability of solving the problem by $\mathrm{A},\, \mathrm{P}(\mathrm{A})=\frac{1}{2}$
Probability of solving the problem by $\mathrm{B}, \,\mathrm{P}(\mathrm{B})=\frac{1}{3}$
since the problem is solved independently by $A$ and $B$,
$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$
$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$
Probability that exactly one of them solves the problem is given by,
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A})$
$=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}$
$=\frac{1}{3}+\frac{1}{6}$
$=\frac{1}{2}$
Given two independent events $A$ and $B$ such $P(A)=0.3,\,P(B)=0.6 .$ Find $P($ neither $A$or $B)$
The probability of solving a question by three students are $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ respectively. Probability of question is being solved will be
The probability that at least one of the events $A$ and $B$ occurs is $3/5$. If $A$ and $B$ occur simultaneously with probability $1/5$, then $P(A') + P(B')$ is
Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$, $ P ( B )=0.4$, $P ( A \cap B )=0.8$
If $A, B, C$ are three events associated with a random experiment, prove that
$P ( A \cup B \cup C ) $ $= P ( A )+ P ( B )+ P ( C )- $ $P ( A \cap B )- P ( A \cap C ) $ $- P ( B \cap C )+ $ $P ( A \cap B \cap C )$