One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ ' the card drawn is a king and queen '

$F:$  ' the card drawn is a queen or jack '

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In a deck of $52$ cards, $4$ cards are kings, $4$ cards are queens, and $4$ cards are jacks.

$\therefore \mathrm{P}(\mathrm{E})=\mathrm{P}$ (The card drawn is a king or a queen) $=\frac{8}{52}=\frac{2}{13}$

$\therefore \mathrm{P}(\mathrm{F})=\mathrm{P}$ (The card drawn is a king or a jack) $ =\frac{8}{52}=\frac{2}{13}$

There are $4$ cards which are king and queen or jack.

$\therefore $ $\mathrm{P}(\mathrm{EF})=\mathrm{P}$ (The card drawn is king or a queen, or queen or a jack) $=\frac{4}{52}=\frac{1}{13}$.

$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{2}{13} \cdot \frac{2}{13}=\frac{4}{169} \neq \frac{1}{13}$

$\Rightarrow \mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{F}) \neq \mathrm{P}(\mathrm{EF})$

Therefore, the given events $E$ and $F$ are not independent.

Similar Questions

If the odds against an event be $2 : 3$, then the probability of its occurrence is

If $A$ and $B$ are two events, then the probability of the event that at most one of $A, B$ occurs, is

  • [IIT 2002]

If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$

Prove that if $E$ and $F$ are independent events, then so are the events $\mathrm{E}$ and $\mathrm{F}^{\prime}$.

If $A$ and $B$ are two events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{2}{3},$ then