Gujarati
14.Probability
hard

If $m$ rupee coins and $n$ ten paise coins are placed in a line, then the probability that the extreme coins are ten paise coins is

A

$^{m + n}{C_m}/{n^m}$

B

$\frac{{n\,(n - 1)}}{{(m + n)\,(m + n - 1)}}$

C

$^{m + n}{P_m}/{m^n}$

D

$^{m + n}{P_n}/{n^m}$

Solution

(b) $m$ rupee coins and $n$ ten paise coins can be placed in a line in $\frac{{(m + n)\,\,!}}{{m\,\,!\,\,n\,\,!}}$ ways.

If the extreme coins are ten paise coins, then the remaining $n – 2$ ten paise coins and $m$ one rupee coins can be arragned in a line in $\frac{{(m + n – 2)\,\,!}}{{m\,\,!(n – 2)\,\,!}}$ ways.

Hence the required probability

$ = \frac{{\frac{{(m + n – 2)\,\,!}}{{m\,\,!(n – 2)\,\,!}}}}{{\frac{{(m + n)\,\,!}}{{m\,\,!\,\,n\,\,!}}}} = \frac{{n(n – 1)}}{{(m + n)(m + n – 1)}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.